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The studies [1-6] examined the settling of gas suspensions in an enclosed volume, a 
process which is of interest in a wide range of production operations. The authors of 
[i-3] studied hindered steady-state settling in a unidimensional approximation in order to 
establish the dependence of the settling rate on particle concentration. A two-velocity 
model was used in [4], again in the unidimensional case, for highlyconcentrated suspensions 
in order to find the nonsteady rate of particle deposition. Analysis of the settling of a 
suspension in a two-dimensional formulation within the framework of the two-velocity model 
[5, 6] showed that the non-unidimensional flows of liquid which develop significantly alter 
the characteristics of unidimensional settling. 

Below, we use the methods of the mechanics of multiphase media [7] to study the settling 
of a gas suspension in a closed vessel. It is shown that allowing for the compressibility of 
the gas leads to the occurrence of gasdynamic oscillations of the carrier phase which, under 
certain conditions, have a significant effect on particle deposition. In particular, these 
oscillations intensify the settling of the suspension. 

i. Formulation of the Problem. Let a gas suspension consisting of solid spherical 
monodisperse particles and a perfect gas be located in a closed vessel at the initial moment 
of time. The particles are uniformly distributed over the volume of the vessel. Under the 
influence of gravity, the particles begin to fall, and, as a result of friction, this fall- 
ing leads to motion of the gas. The problem is to calculate the induced motion of the 
dispersion medium up to the point of complete deposition of the particles. It is assumed 
that the dimensions of the vessel are greater in one of the horizontal directions than in 
the other. This allows us to examine a two-dimensional problem (the cross section of the 
vessel being a square). The volume fraction of particles is negligibly small, and collisions 
between the particles are not considered. It is assumed that the gas and the particles have 
the same temperature (one-temperature medium), which at the initial moment of time is equal 
to T o . 

With allowance for the above assumptions, we can write the equations of motion of the 
viscous, heat-conducting gas as follows in dimensionless variables 
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Here, t is time; x and y are cartesian coordinates (the x axis is directed along the lower 
boundary of the region, while the y axis is perpendicular to it); Pz, U l, P, T are the den- 
sity, velocity, pressure, and temperature of the gas; G is the vector of the gravitational 
force; F is the phase interaction force; P2 is the mean density of the disperse phase; M, 
Fr, Re, Pr are the Mach, Froude, Reynolds, and Prandtl numbers; y is the adiabatic exponent 
of the gas; Yz is the ratio of the heat capacity of the gas at constant volume c V to the heat 
capacity of the particles c2; w = P2~ is the steady-state rate of fall of a single 
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particle calculated in the Stokes approximation; p2 ~ and d are the true density and diameter 
of the particles; g is acceleration due to gravity; ~ is the absolute viscosity of the gas; 
R is the gas constant; L is the side of the region; P10 is the density of the gas near the 
bottom surface at the initial moment of time; Cp is the heat capacity of the gas at constant 
pressure; ~ is the thermal conductivity of the gas. As the characteristic scales of length, 
velocity, time, density, temperature, and pressure, we respectively took L, w, L/w, P10, To, 
Rp10T 0. Viscous dissipation of energy was ignored. 

We assumed that the change in the momenta of the phases during their interaction was 
determined by the frictional force 

Re~ p~ 
F = Fr=-~[4c a (R%)~  (U 1 - -  U~), ( 1 . 4 )  

where  U 2 i s  t h e  v e l o c i t y  o f  t h e  d i s p e r s e  p h a s e ;  Rep i s  t h e  i n s t a n t a n e o u s  Rey n o ld s  number o f  
a p a r t i c l e ;  cd(Re p)  i s  t h e  d rag  c o e f f i c i e n t  o f  t h e  p a r t i c l e s .  

We w i l l  u s e  t h e  a p p r o a c h  p r o p o s e d  in  [8]  t o  d e s c r i b e  t h e  m o t io n  o f  t h e  d i s p e r s e  p h a s e .  
At t h e  i n i t i a l  moment o f  t i m e ,  t h e  e n t i r e  r e g i o n  b e i n g  examined  i s  h y p o t h e t i c a l l y  s u b d i v i d e d  
i n t o  a f i n i t e  s e t  o f  i d e n t i c a l  s u b r e g i o n s .  The m o t i o n  o f  a l l  p a r t i c l e s  which  happen t o  f a l l  
w i t h i n  an a r b i t r a r y  s u b r e g i o n  i s  d e s c r i b e d  by i n t r o d u c i n g  a s o - c a l l e d  m a c r o p a r t i c l e  in  p l a c e  
o f  i n d i v i d u a l  p a r t i c l e s .  The mass o f  e ach  m a c r o p a r t i c l e  i s  e q u a l  t o  t h e  sum o f  t h e  mass o f  
t h e  p h y s i c a l  p a r t i c l e s  which  c o m p r i s e  i t .  The d rag  f o r c e  i s  e q u a l  t o  t h e  sum o f  t h e  d r ag  
f o r c e s  o f  t h e  p h y s i c a l  p a r t i c l e s  a s s o c i a t e d  w i t h  t h e  g i v e n  m a c r o p a r t i c l e .  The s u b d i v i s i o n  
i s  done so t h a t  t h e  masses  o f  a l l  o f  t h e  m a c r o p a r t i c l e s  a r e  t h e  same. Thus ,  t h e  mass o f  one 
m a c r o p a r t i c l e  i s  e q u a l  t o  t h e  r a t i o  o f  t h e  t o t a l  mass o f  t h e  d i s p e r s e  phase  in  t h e  r e g i o n  t o  
t h e  number o f  m a c r o p a r t i c l e s .  

The m o t i o n  o f  t h e  k - t h  m a c r o p a r t i c l e  i s  r e g a r d e d  as  t h e  m o t i o n  o f  a m a t e r i a l  p o i n t  and 
i s  d e s c r i b e d  ( i n  d i m e n s i o n l e s s  fo rm)  by t h e  e q u a t i o n s  

tlep dr h 
d~th= FrG + Fr ~ c~ (Bey) (U x --Uh),  -$/- = Uh ( 1 . 5 )  

(U k and r k are the velocity and radius-vector of the k-th macroparticle). 

The condition of "adhesion" is imposed at the boundary of the region and the initial 
temperature is maintained (UI = 0, T = i). The particle collisions with the bottom walls 
are assumed to be perfectly inelastic, while the collisions with the other walls are assumed 
to be perfectly elastic. At the initial moment of time, the gas is in static equilibrium. 
The particles are at rest and are distributed uniformly over the volume: U i = U 2 = 0, Pl = 
exp (--yM2Fry), P2 = M21, T = 1 (M21 = p2~ is the ratio of the initial mass frac- 
tions of the phases and n o is the initial particle concentration). Below, we study the 
settling of particles small enough so that the Stokes formula c d = 24/Rep is valid for the 
drag coefficient. 

The process being examined is actually isothermal, since the temperature gradients 
caused by pressure forces are extremely small. The use of energy equation (1.3) instead of 
isothermality condition T = const was due to the need to adequately describe the acoustic 
effects, which play an important role here (the isothermality condition would have led to an 
isothermal sonic velocity in the system and, thus, to distortion of the actual pattern of 
the process). 

2. Numerical Method. System (i.i)-(1.3), describing the flow of the gas, was solved 
numerically on a uniform grid by the finite-difference method of coordinate splitting [9]. 
The system of equations of motion of the particles (1.5) was integrated numerically by 
Euler's method. 

The values of gas velocity at the points where the macroparticles were located were 
found by linear interpolation, while the values of the velocity and mean density of the dis- 
perse phase at the grid nodes were found by averaging the parameters of the macroparticles 
closest to each node. A detailed description of the numerical method is given in [8]. 

The calculations were performed on a 21 x 21 grid. Here, 1600 macroparticles were in- 
troduced into the region. The time step of the integration corresponded to a Curant number 
of 0.5. Control calculations showed that the numerical solution obtained does not depend on 
the grid parameters or the number of macroparticles. In all of the calculations, Pr = i, 
while the remaining parameters were varied. 
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3. Basic Laws of the Process. Gravity causes the particles to begin to fall, with 
the particles entraining the gas as they descend. During the time t < t,, the gas placed 
in motion does not "feel" the bottom wall of the vessel, and its elastic properties are not 
manifest; t, ~ ts, where t s is the characteristic acoustic time (the time over which the 
sound wave travels a distance equal to the height of the region; t s = M when the method of 
obtaining dimensionless parameters we employed is used). It is during the time t, that a 
high-pressure region is formed near the bottom surface. This region initially slows and 
subsequently reverses the gas flow. During the time t < t,, the gas entrained by the par- 
ticles is accelerated and, in turn, increases the rate of fall of the particles. This self- 
accelerating process is similar to the processes which take place when a collection of par- 
ticles falls in an infinite medium [i0]. 

At t > t,, the settling process differs qualitatively from that studied in [i0]. The 
compression wave that is formed is reflected from the bottom wall and begins to propagate 
upward, slowing the descent of the particles. It moves downward after being reflected from 
the top wall of the vessel, and so forth. Decaying oscillations of the gas (a standing 
wave) are generated. These oscillations have an effect on particle deposition and, in turn, 
are affected by the latter process. The friction of the gas against the side walls leads to 
the formation of boundary layers and makes the deposition process non-unidimensional. 

The pattern of the process is illustrated in Figs. 1 and 2. Curve 1 in Fig. 1 shows 
I] 

time dependence of the vertical momentum of the gas J = J~plvldxdy, while curve 2 shows the 
O0 

the time dependence of the vertical coordinate of the center of gravity of unsettled par- 
ticles Yc for the parameters Re = 30 ~, M 2 = 0.05, M21 = 0.5, Fr = 40. For the same para- 
meters, Fig. 2 shows lines of particles connecting those macroparticles initially located 
at the horizontal levels y = i; 0.75; 0.5; 0.25 (lines 1-4). Also shown are the velocity 
fields of the gas at the successive moments of time t I = 0.13; 0.23; 0.48 (a-c). In the 
given case, curve 1 coincides with the upper edge of the settling gas suspension. Due to 
the symmetry of the solution relative to the plane x = 0.5, in Fig. 2 we show only the left 
half of the region. The moments tl, t2, and t 3 are indicated in Fig. i. For the conditions 
being examined, the characteristic particle relaxation time, t r = i/Fr = 0.025, is an order 
less than the characteristic acoustic time t s = 0.22. 

It is evident from Fig. 1 that a self-accelerating regime of particle fall is realized 
at t < t, = 0.ii. At the moment t, = 0.13, the maximum velocity of the gas reaches 3.3, 
while maximum particle velocity reaches 3.5, i.e., the rate of particle fall is 3.5 times 
greater than the rate for a single particle. Figure 2 illustrates the nonuniformity of the 
velocity field of the gas and the associated curvature of the particle lines - the particles 
fall more slowly near the side walls. At t Z t,, the gas begins to be slowed and reversed 
by the bottom wall (Fig. 2b). At the moment t = 0.24, the vertical momentum of the gas is 
equal to zero. The gas as a whole then begins to move upward. Since the time of velocity 
relaxation of the particles in this case is considerably shorter than the period of oscilla- 
tion of the gas, their velocities quickly decrease and even change sign at this stage. 
Thus, the center of gravity of the entire collection of particles is lowered to a certain 
extent (curve 2 in Fig. i). Since the velocity of the gas is maximal in the plane x = 0.5, 
the lines of the macroparticles ascend at this location (Fig. 2c), so that the upper bound- 
ary of the settling gas suspension becomes severely curved. After reversal near the top 
wall, the gas descends. Here, the rate of fall of the particles again increases. By the 
moment t = 1.09, complete settling has occurred and the amplitude of the gas oscillations 
has decreased by a factor of 30 compared to the initial amplitude. 

Below, we analyze the effect of different parameters on the course of the process. The 
inverse of Fr is the dimensionless time of velocity relaxation of the phases. A decrease 
in Fr is accompanied by an increase in particle relaxation time, which slows the rate of mo- 
mentum transfer from one phase to the other. It is for this reason that deposition becomes 
more uniform with a decrease in Fr. Thus, with the parameters in Fig. 1 but for Fr = i0, 
the momentum of the gas J(t) at the moment of time t = t, decreases nearly by a factor of 
two. Meanwhile, the relation Yc(t) is almost a straight line, since the particles do not 
"have time" to respond to the high-frequency oscillations of the gas. 

A reduction in M is equivalent to an increase in sonic velocity in the gas, i.e., a 
reduction in the characteristic acoustic time and the associated duration of the first 
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(accelerated) stage of deposition. Accordingly, there is also a reduction in the initial 
amplitude of the gas oscillations and their effect on particle settling. If the particles 
are sufficiently inert, then they will not "sense" small gas oscillations which develop. 
Thus, at M 2 = 3.10 -3 and the values of the other parameters in Fig. i, the time dependence 
of the center of gravity of the unsettled particles is nearly a straight line. In con- 
trast to the process depicted in Fig. i, at the indicated value of M the settling is uni- 
form and the upper boundary of the gas suspension is a horizontal straight line. A de- 
crease in M 2 is accompanied by an increase in the frequency of the gas oscillations, so they 
decay more rapidly. For example, for M 2 = 3.10 -3 , the oscillations practically cease within 
a period of time equal to half the time required for complete settling of the particles. 

A change in Re within the investigated range has little effect on the deposition pro- 
cess. An increase in Re corresponds to a reduction in the viscosity of the gas, which means 
that more momentum is acquired by the carrier phase at the initial stage and that the oscil- 
lations which develop decay more slowly. Thus, with M 2 = 0.05, Fr = 40, and M21 = 0.i, an 
increase in Re from 15 to 30 and 60 corresponds to an increase in the maximum total momentum 
J(t) at the moment t = t, by about 20% for Re = 30 compared to Re = 15 and by about 15% for 
Re = 60 compared to Re = 30. The curve Yc(t) changes its form only slightly with an increase 
in Re. 

A reduction in the quantity of the disperse phase M21 results in a decrease in the mo- 
mentum imparted to the gas. Accordingly, there is also a decrease in the amplitude of the 
gas oscillations and their effect on the dynamics of the particles. At M21 ~ 0.01, the par- 
ticles settle uniformly in the vessel and the settling process is unidimensional in charac- 
ter. 

Figure 3 shows the dynamics of deposition of a gas suspension in the form of the time 
dependence of the running fraction of settled particles K(t) with Re = 30, Fr = 40, and M 2 = 
0.05 and a change in the parameter M2z: M21 = 0.5; 0.2; 0.i; 0.001 (lines 1-4). The gas 
oscillations which develop intensify settling. The greater the amplitude of the oscilla- 
tions, dependent on M21, the more the curve K(t) deviates from the straight line correspond- 
ing to uniform settling. It is evident from Fig. 3 that the time required for 50% settling 
of the particles for M21 = 0.5 is roughly half the time required at M=I = 0.001. 

As already noted, a reduction in M is accompanied by a decrease in the intensity of the 
oscillations and their effect on particle deposition. At sufficiently small M, the deposi- 
tion process is uniform and unidimensional. Even in this case, however, by increasing Fr 
and thus reducing the particle relaxation time, it is always possible to realize a situation 
whereby the relaxation time is shorter than the acoustic time. If the mass of the particles 
is sufficiently large (M21 ~ i) in this case, then effects similar to those described above 
will occur. The ratio ts/tr = FrM ~ 1 determines the region in which gas oscillations affect 
the settling process. 

4. Comparisonwith Unidimensional Settling. To study the effect of non-unidimensional 
phenomena on gas oscillation and particle settling, we calculated the corresponding unidimen- 
sional processes. The unidimensional equations were integrated by means of the explicit 
scheme in [II] on a uniform grid with 21 nodes. The Curant number Ku = 0.05. 
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Relative to the unidimensional case, in the two-dimensional case friction against the 
side walls of the vessel results in lower acceleration of the gas at the initial (acceler- 
ating) stage of motion and faster decay of the oscillations which develop. This in turn 
leads to more uniform particle settling. Figure 4 shows the total momentum of the gas J(t) 
and the coordinate of the center of gravity of the unsettled particles Yc(t) (curves 1 and 
2) for the unidimensional (dashed lines) and two-dimensional (solid lines) cases with M = = 
0.05, Re = 30, M=I = 0.5, and Fr = 20. Within the range of parameters in which gas oscilla- 
tions are significant, there is a 15-25% relative increase in momentum J(t) in the uni- 
dimensional case compared to the two-dimensional case at the moment t = t,. 

Thus, the above study shows that, under certain conditions, the hindered settling of a 
gas suspension is accompanied by gasdynamic oscillations of the carrier phase, these oscilla- 
tions having a significant effect on the settling process. The gas moves alternately up and 
down, accelerating or slowing particle settling accordingly. The result of these processes 
is an intensification of particle deposition. This effect is seen in both unidimensional 
and two-dimensional cases, but it is less pronounced in the latter case due to friction of 
the gas against the side walls of the vessel. The method used here to describe the motion of 
the disperse phase was shown to be highly effective in modeling the motion of a gas suspen- 
sion with a definite disperse-phase boundary. 
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PROPAGATION OF NONLINEAR LONGITUDINAL WAVES IN POROUS SATURATED MEDIA 

A. M. lonov, V. K. Sirotkin, and E. V. Sumin UDC 534.222 

A considerable number of works have been devoted to aspects of low- amplitude wave 
propagation in saturated porous media. A detailed bibliography of studies on this question 
is given in [i]. As experiments show, the upper layer of the earth's core is characterized 
by anomalously high values of the nonlinearity parameter [2, 3]. In view of this there is in- 
terest in questions connected with studying the propagation of finite-amplitude waves in 
porous media also exhibiting dispersion-dissipative properties. Nonlinear waves in a 
Rakhmatullin model (model of equal phase pressures) were considered in [4]. However, it is 
applicable to a very limited class of geological materials. 

In this work a second approximation equation (KdVB) has been ~btained describing propa- 
gation of longitudinal waves of finite amplitude in saturated porous media. In contrast to 
[4], in the model in question equality was assumed for pressure in the solid and liquid 
phases. Analysis of the effect of strength properties for the matrix and impregnating com- 
ponent on the nonlinear dissipative properties of the medium was carried out both for weakly 
cemented (sands) and for strongly cemented (andesite, granite) materials. Within the sug- 
gested model it is possible to describe the anomalously high values of nonlinearity parameter 
observed by experiment. 

i. Continuity and pulse equations for the solid and liquid phases for unidimensional 
planar movement of a water-saturated medium have the form [i, 5] 

O ( l _ m )  p ~ +  o ( l - - m )  O, a o o~ -$7 P:u:  = ~ mP~' + ~ mp2u" = O, 

(t - -  m,) p, ~--~ + u~ o,,: ] ox + ~ o~ 

~1'., { au 2 Ou.," X 01,.,. R - - ( | - - m ) ~ -  + H +  ( ] - - m )  pag, ml) 2~- -~+  u . , - O f f x - } = - - m , ~ - -  + m,(p.zg , 

(1.1) 

where P:, P~, and u:, u 2 are solid and liquid phase density and velocity, respectively; m is 
medium porosity; P2 is pore pressure; Peff and ~eff are effective pressure and tangential 
stress in the medium. Effective pressure Peff is determined by the difference between pres- 
sure in the medium p = (i - m)p: + mp2 (P: is pressure in the solid phase) and pore pressure 

P2: 

Pe~, = p - - p 2  = (l - -  m)(p: - -  p=). ( 1 . 2 )  

We consider the deformation properties of a porous medium saturated with liquid. We 
shall assume that the difference in current porosity from porosity in the unloaded state is 
entirely connected with contact compressibility of particles. Whence it follows that poros- 
ity only depends on the difference of pressures in the solid phase and in the liquid satu- 
rating the pores, and there is a clear correlation between m and Peff: 

.~  - -  re(pelf). (1.8) 
For dry rock Peff = P" Therefore, the rule for the change in porosity due to effective 
pressure (1.3) may be determined from data for the dependence of dry rock compressibility 
on pressure. 
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